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Summary

Taylor [4] proposed a linear programming formulation of the least absolute error
estimation problem and claimed unbiasedness of the estimate in case of errors
distributed symmetrically around zero., Heresomedrawback in Taylor's approach
has been pointed out and a procedure suggested to incorporate the condition of

- unbiasedness in the LP formulation to yield an estimate that minimises the sum of
absolute errors in the class of unbiased estimates. An example has been given to
illustrate the procedure.
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Introduction

Recently, least absolute error (LAE) estimation has received much
attention as an alternative to least squares (LS) estimation, primarily
owing to its insensitivity to outliers. The least squares estimate may be
spoilt by a single grossly outlying observation. In fact, LS estimators are-
far from optimal in many non-Gaussian situations. The LAE estimators
are maximum likelihood and hence! asymptotically unbiased aild efficient
when the errorsfollow a Laplace distribution. A state-of-the-art survey of
LAE estimation appears in Narula and Wellington [1].

LAE estimators in general need not be unbiased. Sielken and Hartley
[3] as well as Taylor [4] have proposed linear programming (LP) solutions
to the LAE estimation problem and have proved the unbiasedness of the
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LAE estimators. The algorithm given by the former leads to an unbiased
estimate only on the tacit assumption of a unique solution to the LP
problem.

The present work points out some drawback in Taylor's approach
(section 2) and suggests a procedure to incorporate the condition of un
biasedness in the LP formulation to yield an estimator that minimises the
sum of absolute errors among unbiased estimators. An example has been
given in Section 4 to illustrate the procedure suggested here.

2. Taylor's Method Reviewed *

Consider the linear model y = -\- u, where is in n X 1 vector of
response variables, X is the given n X p incidence matrix (of regressor or
predictor variables), p is the p X 1 vector of unknown parameters and u
is the n X 1 vector of random errors.

vs.

Taylor claims that the optimal solution (P, u) to the LAE estimation
problem formulated as an LP problem is given by

( ^n) 0 \
(2.1)

J(2) \ ^-(2, I / (n
where yiD and j(2) are sub-vectors of orders p X 1 and n —p X 1 res-
pectively, Z(j) and Z(a) being sub-matrices of orderss p X p and
n —p X p • I is the n —p X n unit, matrix and Ois p X n null matrix.

Let H be the total sample space of u. It was proved that if u is symmet
rical about origin, then unbiasedness of LAE estimates follows for a '
given subset Hi satisfying the relation

X'̂ ^ M(i) "l" /m(2) ^0 ' .

where / is a diagonal matrix with elements +1 or —1. Taylor then took
symmetry of was a sufficient condition for the LAE, methodto provide an
unbiased estimate. According to Taylor, the LP problem necessarily hasa
feasible solution and being bounded below, hasan optimum basic feasible
solution. But an optimum (basic feasible) solution need not be of the
form (2.1). In fact, there may not be any basic feasible solution of the
form (2.1) when X does not have full rank. It seems that even in the full
rank case there may not be an optimal solution of the form (2.1).

Finally, unbiasedness ofLAEjestirnates, when we donfine ourselves to
Hi (assuming it not to be void), can not lead to unbiasedness of the esti
mators in H. Firstly the £f,'s defined by Taylorare not,mutually exclusive
and numerous examples can be constructed where HCsdo not exhaust the
whole sample space H, The first objection is not so serious, because the
set of Hi Scan be divided into a set of mutually exclusive sets and it can
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be shown, following the same line of proof as that of Taylor, that confin
ed to each of these mutually exclusive subspaces ofH, the estimators are
conditionally unbiased. What is more serious is that UH-, may not be H.
Then the estimator isnot defined at all in - {UHt) and as such unbias-
edness does not follow.

3. Unbiased LAE Estimation

Our problem is to minimise e'u*

subject to + u = y (3

where pand u are unrestricted in sign and «+ denotes the column vector
of absolute w-values. e is a vector of unities

Let ^ — By and u' denote some

solution of(3.1). We know that any linear parametric function of the
form C'ZP is estimable. As an estimate of C'Zp we propose C'ZP. Now
in order that E{C'X?) = C'X^ itis necessary and suflScient that E(C'ti} = 0
for all Cand all (3, assuming £•(«) = 0. This implies E{Z) = 0for all p.
Thus ushould belong to the error space, a necessary and sufficient condi
tion for_which is u = Dy where DX = 0. From this we can write D = Z
[I —XX] where Z is arbitrary.
Since X^ + u —y, we have

XBy + Z {I- XX) y = ly

~ y — {I —XB) y for all y and Z.

Thus Bis a ^-inverse of X. Hence the problem of LAE estimation incor
porating unbiasedness be reformulated as the minimisation of Z =
e'{(/ - XB);'}+ where Bi^ag-inverse ofX, a general expression of which

B= X+ U— XXUXX where Uis arbitrary. So the problem reduces
to the minimisation of Z = e'{(/ - XU) (/- XX)_y}+. To solve this LP
problem for U, we shall first find out a particular Xfor a given X, then
define v > 0; w > 0 such that,

(/ - X'U) (I-XX)y = v-w (3.2)
and minimise e' (c + w) subject to (3.2). The unbiased LAE estimator '
will simply be

^ = B-y = {X+ U-XXUXX} y. ~ (3.3)
4. A Simulation Study

To study the behaviour ofLAE estimates obtained by the method sug
gested here, a simulation exercise was carried out. For simplicity, the



least ABSOLUTS ERROR ESTIMATIO^

following two-input model was considered'

+ M

and simulation started with a fixed 10 X 2 input matrix X given by

H
12 16 20 18 23 25 19 18

6 10 12 9 7 10 8 9

Three models were considered, specifying the distribution of u as

(i) normal with mean 0 and Sd. 0.2

(ii) rectangular with p.d.f./(M) = L==, —3.33 < m< 3.33.
(iii) type H (extreme valued) with p.d.f.

/(") =J*!) ^ j —oo <u<oo, m——0.5, a® =0.08.
Parameters of each distribution were so specified as to yield a variance of
0.04 for each distribution in order that results become comparable.

For a single solution in a specific model, random values of u were
selected from the corresponding distributions, then Y values were generat
ed by taking, Pj = 0.6 and l^a = 0.1. For each model 30 such solutions
from dififerent sets of u values were obtained,

The algorithm for the LP solution in each model is as follows :

15 22 \

15 13 /

For an input matrix X we find a g-'inverse X
Then the proWem is to minimise Z = Iv,- + Sw/

, givea {I-XX)y = X'U {I-XX)y+ v-w
-where u = («<^) is unrestricted in sign, v > 0, w > 0.

Defining Ufj = t^j s^j, tjj ^ 0 Sjj ^ 0, / = 1)2, y = 1,2..
can be written as

(I - XX) y = X (T - S) {I - XX) y + v - w

where T > 0, S > 0, v > 0, tv > 0.

The total number of variables in the problem is 60.
As initial basic feasible solution, we start with

Ui = 0, Sii = 0 for all i and j

and if (/ - XX)y -^ 0, vi = (I-XX) y and »>< = 0
I •

while if (I - XX) y <0, v,- = 0, w = - (/ - XX) y.

From solutions of U, the p valiies are obtained from (3.3).

(4.1)

10 (4.1)
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The average values of 30 solutions for each of Pj and Pa in 3 models,
together with respective mean squares are presented below ;

ESTIMATED VALUES OF PARAMETERS WITH MSE IN 3 MODELS

Model
A

Pi
A

Pa
Mean MSE Mean -MSE

Normal 0.6002 0.0153 0.0979 0.0283

Rectangular 0.5952 - 0.0141 0.1035 0.0282

Type II 0.5954 0.0132 0,1052 0.0235
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